Sample Paper 2014: Paper 1

Question 8 (50 marks)

Question 8 (a)
$P=$?
$F=€ 20000$
$t=1$ year
$i=0.03$
$P=\frac{F}{(1+i)^{t}}=\frac{20000}{(1+0 \cdot 03)^{1}}=€ 19417 \cdot 48$

Question 8 (b)

$P=\frac{20000}{(1.03)^{t}}$

Formulae and Tables Book
Financial mathematics: Compound interest [page 30]

$$
F=P(1+i)^{t}
$$

$t=$ Time period (in years)
$i=$ (Annual) rate of interest expressed as a decimal
$F=$ Final value
$P=$ Principal
Note: The time period can be months or weeks instead of years provided the interest rate is given for that time period.

Question 8 (c)

I need to calculate the retirement fund that he has saved for and is available on the day of his retirement. €20 000 is drawn down immediately. The next $€ 20000$ will not be drawn down for another year so its present value on the day of retirement is $\frac{20000}{(1.03)^{1}}$. The next $€ 20000$ will not be drawn from the retirement fund for 2 years so its present value is $\frac{20000}{(1.03)^{2}}$. An so on.

$$
\begin{gathered}
20000+\frac{20000}{(1 \cdot 03)^{1}}+\frac{20000}{(1 \cdot 03)^{2}}+\ldots \ldots \ldots \ldots+\frac{20000}{(1 \cdot 03)^{24}} \\
=20000\left[1+\frac{1}{1 \cdot 03}+\frac{1}{1 \cdot 03^{2}}+\ldots \ldots \ldots \ldots \ldots \ldots+\frac{1}{1 \cdot 03^{24}}\right] \\
a=1, r=\frac{1}{1 \cdot 03}, n=25
\end{gathered}
$$

Formulae and Tables Book Sequences and series:
Geometric series [page 22]

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

$S_{n}=20000\left[\frac{1\left(1-\left(\frac{1}{1.03}\right)^{25}\right)}{1-\frac{1}{1.03}}\right]=€ 358710 \cdot 84$

Question 8 (d)

(i) $(1+i)^{12}=1.03$

$$
\begin{aligned}
& 1+i=1.03^{\frac{1}{2}}=1.002466 \\
& \therefore i=0.002466=0.2466 \%
\end{aligned}
$$

(ii) $\quad F=P(1.002466)^{n}$

His first payment P will be compounded 480 times at an interest rate of 0.2466%. His second payment P will be compounded 479 times at an interest rate of 0.2466%. And so on.
(iii) $358710 \cdot 84=P(1 \cdot 002466)^{480}+$ \qquad $+P(1.002466)^{1}$

$$
=\frac{P(1 \cdot 002466)\left(1-(1 \cdot 002466)^{480}\right)}{1-1 \cdot 002466}
$$

$\therefore P=€ 390 \cdot 17$

Question 8 (e)

10 years less: $30 \times 12=360$ months
$358710 \cdot 84=\frac{P(1 \cdot 002466)\left(1-(1 \cdot 002466)^{360}\right)}{1-1.002466}$
$\therefore P=€ 618 \cdot 35$

